国家超级计算天津中心
新闻中心

【特别报道】——“天河一号”助力相变存储材料与器件研究取得重大进展


随着人工智能、大数据、超级计算机的迅猛发展,要求传统商用计算体系架构更加低功耗、高效率、低成本。

当前传统的冯诺依曼计算体系架构采用二进制数字信号且数据处理与存储分离,约40%的能耗仅用于数据的往返搬运而非计算或存储。为此业界近年来致力于研发基于新型非易失性存储技术的类脑神经元计算器件(Neuro-inspired computing devices),从而实现非冯诺依曼架构的全新计算体系,实现存算一体以及模拟信号处理,实现整体计算性能、效率的数量级提升,以应对后摩尔定律时代微纳电子产业跨越式发展需求。

相变随机存储器(Phase-change random-access memory,PCRAM)是最成熟的新型非易失性存储器技术,然而商用PCRAM器件在反复可逆相变操作过程中,Ge2Sb2Te5(GST)材料组分逐步偏析乃至出现较大孔洞,其非晶相具有本征的电阻值随时间显著漂移特性,且在结晶化时亦存在较大的随机性,致使多数据态存储操作时各态电阻值波动较大,导致高密度存储阵列的单元间与单元内反复多次操作一致性、协同性低下,造成神经元计算时噪声颇高,严重制约了高精度、高效率神经元计算器件的开发。

聚焦此关键科学问题,国家超级计算天津中心用户深圳大学饶峰教授团队联合其它团队,提出了一种新式的相变异质结(Phase-change heterostructure,PCH)设计,所取得的重大进展以First Release形式发布在《Science》杂志。

应用成果

饶峰教授团队联合其它团队,提出了一种新式的相变异质结(Phase-change heterostructure,PCH)设计,由多个交替堆叠的相变层与限制层构成,并通过原位加热且低速生长的多层薄膜磁控溅射沉积技术实现了高质量PCH薄膜的制备。

该PCH可有效抑制玻璃态相变材料结构弛豫以及反复可逆相变过程中的组分偏析,将PCRAM器件数据态的阻值波动和漂移降低到前所未有的水平。该PCH基PCRAM器件在迭代RESET操作时可实现9个稳定的多态存储(各电阻态阻值漂移系数小于~0.005,远低于非晶GST器件的~0.11),并在累积SET操作时器件电导呈现高一致性(波动小于9%,而GST器件波动则超过40%);这些优越的性能适用于精准矢量矩阵乘法计算(precise vector-matrix multiplication calculations)、快速时序相关探测(rapid temporal correlation detections)和其他要求高精度和高一致性的机器学习任务(machine-learning tasks)。

此外,相比GST基器件而言,PCH器件的操作速度快一个数量级(达亚10 ns级)、操作寿命提升三个数量级、操作功耗降低超过87%,亦为发展DRAM型高性能PCRAM器件提供了可行的解决方案。值得指出的是,PCH结构所采用的多层膜制备技术并不会大幅增加芯片制造成本或需开发额外复杂的工艺,可完美匹配现有PCRAM量产工艺,将有助于大力推进基于先进微电子技术的高性能神经元感知芯片的开发。

相变异质结PCH器件超低数据态阻值漂移与高精度的迭代RESET和累积SET操作

该项工作获得了国家自然科学基金优秀青年基金项目、广东省重大科研基础研究项目、深圳市基础研究科学布局项目的资助。该项工作的前期计算工作得到了国家超级计算天津中心的大力支持。

论文链接:

https://science.sciencemag.org/content/early/2019/08/21/science.aay0291